How a little Christmas spirit can be good for you

Faced with a disappointing combination of mild wet weather, long working days and the frustrating realisation that Costa have changed their Black Forest Hot Chocolate recipe (spoiler alert it’s no where near as tasty); this year Christmas spirit has so far eluded me. But, this mild winter malaise did get me thinking. What causes seasonal nostalgia, what does it look like in your brain and does it serve any beneficial purpose? So please enjoy a bit of Brain Bank festive research as we search for the true spirit of Christmas.

It has been suggested that the key to Christmas spirit may be familiarity and a sense of nostalgia for times long gone. Indeed, what gets the festive juices flowing more than cheesy Christmas movies, twinkling lights and festive family gatherings – experiences we most likely all share and repeat year after year. Krystine Batcho, nostalgia expert and professor of psychology at Le Moyne College in New York, thinks that this bittersweet sense of seasonal nostalgia really embodies the Christmas spirit and that this feeling may also hold some emotional benefit.

But what exactly is nostalgia?

There was a time when nostalgia was though of as a physical illness. This was exemplified by feelings of home sickness experienced by young soldiers serving away from their families for the first time, often culminating in varying physical symptoms including anorexia resulting from loss of appetite. However, we now appreciate that nostalgia is actually linked with a range of emotions, both positive and negative. One study suggests that the predominant profile of nostalgia is a mix of happiness and sentimentality but, it is also recognised that this can be tempered by the sadness of loss and yearnings for a different time. One thing that is pretty much agreed upon however is that the feeling of nostalgia is universal, cutting across cultures, historical periods and developmental stages – even a child can be nostalgic.

Krystine thinks that nostalgia can also be beneficial. Specifically, she suggests that it helps us to maintain a constant sense of identity in the face of large and often traumatic life changes. It provides us with a tangible link to our own personal past and helps us remember who we are. In fact nostalgia is thought to peak in early adulthood, a time when transition and change can become a big part of our lives (think marriage, college, new jobs!).

The holiday season in particular can evoke strong feelings of nostalgia due to repeated experiences shared year on year. This is especially true in regard to relationships. So many of our holiday experiences centre around interpersonal relationships, family gatherings, religious traditions and cultural customs. Think of the festive classic “Driving home for Christmas” and the nostalgic feelings it summons up regarding reuniting with loved ones for the festive season. In fact, this form of nostalgia can help decrease feelings of loneliness by helping people feel connected to family again, even when they are not physically present.

So what is happening in our brains when we experience festive nostalgia?

One study by Kentaro Oba, from the Department of Frontier Health Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, shows a relationship between memory and reward systems in the brain, specifically in relation to childhood nostalgia. This study observes co-activation of both the hippocampal formation and ventral striatum during nostalgic experiences. The connection also appeared to be stronger in people who report feeling a strong sense of nostalgia. This suggests that hippocampal memory and ventral striatum reward systems may work together to produce the beneficial and rewarding feelings linked with nostalgia. The researchers suggest that memory retrieval via the hippocampus during nostalgia can trigger a cascade of reward processes including activity in the hippocampal-VTA (ventral tegmental area) loop and culminating in release of the neurotransmitter dopamine. It is therefore speculated that, based on the function of this loop, memory and dopaminergic reward during nostalgia may be involved in psychological resilience. Specifically nostalgia strengthens the association between an autobiographical memory and the feeling of reward. This cycle can induce feelings of positivity and may help those experiencing nostalgia to overcome adversity.

Finally, when it comes to the Christmas spirit one group of researchers from Denmark used functional magnetic resonance imaging to pinpoint how festive imagery can affect the brain. Although only four people took part in this unusual study, the work suggests that festive feelings may be linked with activation of the frontal, parieto-occipital and subcortical brain regions.

Perhaps Christmas is all in the mind but this is proof enough for me that festive feelings are probably good for you – so pass me another mince pie I think E.T is on TV….

Save

This Christmas remember: Wash your hands not your turkey!

Screen Shot 2016-12-12 at 17.28.38.pngWith Christmas fast approaching, many of us will be stocking up ready for a festive feast – the centrepiece of which is usually a nice plump goose or turkey. But this year, alongside preparations to ensure your bird is moist and mouthwatering, it’s important to also keep in mind the dangers associated with putting your turkey under the tap!

Raw poultry provides a home for Campylobacter and Salmonella – the most common causes of food poisoning in the UK. In fact, in 2014 it was found that approximately 7 in 10 chickens sold in British supermarkets were contaminated by Campylobacter. But don’t fret, as a rule, good kitchen hygiene and thorough cooking are usually enough to avoid infection.

However, there is one important aspect of kitchen hygiene which seems to be regularly overlooked, this being the importance of not washing your bird in the sink before cooking. Placing a turkey under a kitchen tap causes an invisible storm of bacteria to spray from your meat, settling on anything within range (from clean utensils to previously sterile working surfaces). This cross contamination significantly increases the risk of infection to yourself and your family.

2187298129_ea44b55d86_zIn 2015 almost 900 people took part in a national survey carried out by researchers at the Universities of Manchester and Liverpool which found that around 50% of participants always or usually washed their turkeys under the tap before cooking. This means that, despite warnings from the food standards agency, the message is still not getting across.

This year we want to add our voice to this campaign and keep our followers healthy over the festive period. So, this Christmas make sure to treat your favorite bird correctly and remember – Wash your hands not your turkey!

Wishing wish you all a happy and healthy holiday!

Post by: Sarah Fox

What the frack?: An exploration of hydraulic fracturing in the UK.

For many years I’ve been skirting the sidelines of the debate on hydraulic fracturing (commonly known as fracking), occasionally dipping in and out of articles but usually concluding that I don’t know enough to make an informed decision. However fracking has now come to me, placing itself firmly on my doorstep – so I’ve decided it’s about time I did my research!

I live in Bury, a region in the north of Manchester which, according to the amusingly named website ‘Frack Off’, sits within what is known as an oil exploration block. This being an area of land, typically 1000s of square kilometres in size, which has been ‘awarded’ to an oil drilling and exploration company by the government. Apparently the lucky exploration company with control over my home turf is Hutton Energy.

screen-shot-2016-10-30-at-12-17-37

The reason my home county is such hot property for energy companies is because the ‘British Geological Survey Gas-In-Place Resources Assessment of Bowland Shale’ has suggested that it sits above a large amount of, possibly gas rich, shale rock. Shale is a fine-grained sedimentary rock formed by compression of mud (mineral particles and organic matter) over time. It is also incredibly common, forming over 35% of the world’s surface rock. Over millions of years shale becomes buried deep within the Earth and, when it reaches depths of over 2 kilometres, heat and pressure cause organic matter within the shale to release methane gas – it is this ‘natural gas’ which can be harvested to generate electricity for domestic use. The problem with shale gas is that, unlike conventional gas supplies (such as those harvested in the North Sea) which collect in large reservoirs, the methane in shale is trapped by the fine grain structure of the rock. It is only when shale rock is drilled and fractured that the gas is released and can be harvested. This process of fracturing shale rock to harvest methane gas has caused an enormous stir, with supporters on both sides of the debate campaigning ferociously.

But what are the debates for and against this process and how relevant are these to fracking in the UK?

To understand these arguments it is first important to know what hydraulic fracturing really entails and there is no doubt that the process sounds particularly invasive. For starters, shale gas exploration companies will drill large boreholes down into gas-bearing shale rock. These holes will stretch thousands of miles below the surface of the ground and, in many cases, will continue horizontally through the shale rock. These boreholes are then lined with steel and concrete for stability and to limit leakage of fracking-related materials into the surrounding land. Next, a perforating gun is used in the lower segments of the borehole to make a number of small holes in the concrete casing – these holes are concentrated in the parts of the pipe sitting within the shale rock. Finally, a mixture of water, sand and chemicals is pumped under high pressure down the borehole and out of the small holes in the concrete piping. This high pressure water mix causes fractures to develop in the shale rock, while sand within the water lodges in these cracks ensuring that they remain open and porous. This process allows gas trapped within the shale to flow out of the rock and then travel back up through the borehole to the surface for harvesting.

Supporters of this process argue that fracking in the US has significantly boosted domestic oil production, driven down the cost of gas and created many job opportunities. Those in favour also suggest that fracking can generate electricity at half the CO2 emissions of coal – but, be aware that this figure varies depending on sources and that some argue that the atmospheric pollution caused by fracking is actually no better than that of traditional coal extraction. The benefits here are attractive for the UK, especially since our North Sea gas fields are reaching the end of their lives, most of our nuclear plants are planned to close by 2023 and a third of our coal-fired power stations are set to close by 2016 to meet European air quality regulations. So, we are undoubtedly in need of an energy boost. However, it is interesting to note that oil and gas industrial representatives recently told ‘New Scientist’ that “ it would take at least 10 years for the UK to produce a meaningful amount of shale gas, making it a poor substitute for dwindling North Sea production in the short term”

So is fracking fit for purpose, especially considering that many academics agree that a move towards renewable sources of energy is preferable?

Those opposed to the process argue strongly that fracking introduces too many health and environmental concerns to be a viable and safe source of energy. Specifically, many are concerned that methane gas and fracking chemicals could travel upwards through natural fractures in the rock, polluting underground aquifers and further contributing to global warming. It is also suggested that leaks in pipelines could lead to further aquifer pollution. These concerns are certainly valid, however to date there have been very few peer reviewed articles published suggesting that chemicals and methane released by the fracking process have reached local aquifers. It is also argued that these risks can be significantly minimised by strict regulations and regular monitoring. For example, thorough geological surveys should be carried out prior to exploratory fracking to detect pre-existing fractures, pipelines should be strongly reinforced and regularly monitored and chemicals used in the fracking process should be assessed and approved by the environmental agency.

Many opponents to the process also raise concerns that fracking may trigger earthquakes. Again, to date there have been few proven links between fracking and earthquakes. However, one of the few instances where this has been the case was in 2011 when two small earthquakes struck Blackpool close to an exploratory fracking site. Experts suggest that these quakes were caused by lubricated rocks slipping along a small fault line. Cuadrilla, the company in charge of the Blackpool site, propose that they will now monitor seismic activity around all their fracking sites and, if small quakes begin to occur, they will reduce the flow of water into the borehole, or even pump it back out preventing bigger quakes.

Indeed, many of the environmental and health concerns raised against fracking seem to be manageable given stringent regulation and proper monitoring – something which the UK government claim to take very seriously.

In my view more research is still needed to explore the validity of existing environmental concerns while stringent regulations must also be put in place before going forward with further exploratory work. This all leads me to one big question: can we trust those involved in the process to ensure this happens?

On a personal level I’m still not convinced, there does seem to be a strong vested government interest in moving fracking forward – in some cases this is happening to the detriment of local councils and areas of natural beauty. In my mind urgency is the mother of mismanagement so, until I’m convinced that fracking in the UK will be properly managed, local communities will be consulted and engaged as part of the process and this will not be used as an excuse to slow down on development of more sustainable energy resources I think I will remain skeptical.

Post by: Sarah Fox, @FoxWoo84

Originally published online at: http://thebrainbank.scienceblog.com/

Save

Save

Can I please buy one of your kidneys?

Should we legalise the sale of human organs?

In the UK alone the average waiting time for a kidney transplant is 3 years, this costs the NHS around £24,000 per patient per year and in 2013 – 2014 1000 people died whilst on the transplant waiting list. Dialysis patients also often say they feel that they are just existing rather than living. But, if these patients could get a transplant from a living donor, their life expectancy would increase up to 23 years and their lives could really begin. With increasing cuts to the NHS budget is it possible that the cost-effectiveness of kidney transplant might persuade the government to legalise a market in human organs?  The implementation of a legal organ market would also increase the human organ supply and eliminate the consequences of the black market.

Due to a shortage in organs, the black market and transplant tourism is thriving. Annually, 15,000 – 20,000 illegal kidney transplants take place around the world, often in developing countries such as India and the Philippines. There are even slums in the Philippines dubbed “kidney-vile”, as the majority of the slum’s residents have been driven to sell a kidney. But the black market is built on systematic deception. Brokers coerce desperate workers to sell a kidney then give them much less money than they were promised. Nor do they care about the surgical quality and often leave donors with little or no aftercare. Consequently, donors often become ill and are unable to continue their usual hard labour, which perpetuates their poverty, rather than alleviating it. Recipients are also affected by black market fraud: often these kidneys are not screened properly and donors are coerced to cheat their medical records. As a result of these schemes and poor hygiene standards, recipients often contract diseases such as hepatitis B/C and HIV.

Group of men from Baseco “Kidney-ville” in Philippines, displaying their scars from selling a kidney.

Group of men from Baseco “Kidney-ville” in Philippines, displaying their scars from selling a kidney.

Iran is currently the only country with a compensated and regulated kidney donation program. In this system, there are no brokers and it is charity organizations that coordinates donors with recipients. The government pay a fixed price for organs and cover the costs of all necessary aftercare for donors. Due to this system, Iran is currently the only country with no kidney transplant waiting list. It has also successfully eliminated its black market, and has still maintained a respectable percentage of altruistic donations. Nevertheless there are flaws to the Iranian system as discussed here.

Erin & Harris proposed an ethical, highly regulated, system in which only individuals within a nation are eligible to sell or receive organs. The market would have one purchaser (e.g. the NHS in the UK) and organs would be allocated fairly, giving recipients an equal chance of receiving a transplant regardless of their economic background. This system would also remove the draw for brokers, and subsequently reduce the exploitation of vulnerable people. Medical screening would ensure only healthy individuals could sell an organ, which would to minimise risk (Gill & Sade, 2002). Such a system would also provide proper medical care for donors who would also benefit from a full psychological evaluation, to make sure they are aware of the consequences of their actions.

A study of 478 donors from the Iranian regulated system has shown their health did not deteriorate after the sale, and that 90% of them were content with selling their kidney. These results contrast markedly with the study of 305 Indian donors in an unregulated market. The health of 90% of these donors declined, people living below the poverty line rose up to 20% and 79% of donors would not recommend selling a kidney. This shows that within a regulated program, both vendors and patients are better cared for and are more satisfied with the transplant process.

The strongest argument against the sale of organ is the possible exploitation of the poor. Critics argue that legalisation could lead to a market that would exploit poorer people, as they might view organ sale as a last resort. But, is it exploitation if a person makes a reasoned decision to take an action they consider to be the best option to improve their life? One can’t assume that money would simply overrule a person’s judgment. A black market would also lead to greater exploitation than any legalised market ever would. Prohibiting an organ market is paradoxical, to restrict an individual’s autonomy and cause moral harms to liberty.

Another prominent argument against the sale of human organs is that it would lead to commodification of the human and therefore corrupt human dignity. Commodification is an unsuitable term to use for the sale of a kidney, since there are numerous other circumstances when paying money does not insinuate loss of dignity, such as surrogacy.The scarcity of organs and, death and exploitation of people will not be resolved through rhetoric of moral repugnancy and human dignity.

Under prohibition, patients are suffering and dying whilst waiting for a transplant. Both vendors and recipients are exploited by the black market, and the human rights of poor people are violated. These problems will continue to exist as long as there is a dearth of organs. So, should a market in human organs from living persons be legalised? Or is it merely a naive and impractical idea, only appropriate for a dystopian future. Either way, the possibility of legalising a regulated and ethical market should be explored.

Post by: Alyssa Vongapai


References

Erin, C. A., & Harris, J. (2003). An ethical market in human organs. Journal of Medical Ethics , 29 (3), 137–138.

Ghods, A. J. (2009). Ethical issues and living unrelated donor kidney transplantation. Iranian Journal of Kidney Diseases , 3 (4), 183–191.

Goyal, M. (2002). Economic and Health Consequences of Selling a Kidney in India. Journal of the American Medical Association , 288 (13), 1589.

Higgins, R., West, N., Fletcher, S., Stein, A., Lam, F., & Kashi, H. (2003). Kidney transplantation in patients travelling from the UK to India or Pakistan. Nephrology Dialysis Transplantation , 18 (4), 851–852.

Hippen, B. E. (2005). In defense of a regulated market in kidneys from living vendors. The Journal of Medicine and Philosophy , 30 (6), 593–626.

Kidney Org. (2010). Transplantation Cost Effectiveness. [Online] Available from:http://www.kidney.org.uk/archives/news-archive-2/campaigns-transplantation-trans-cost-effect/. [Accessed on 5 Aug 2016]

MacKellar, C. (2014). Human Organ Markets and Inherent Human Dignity. The New Bioethics: A Multidisciplinary Journal of Biotechnology and the Body , 20 (1), 53–71.

Moazam, F. (2009). Conversations with Kidney Vendors in Pakistan. Hastings Center Report, (June), 29–44.

New Internationalist. (2014). Human traffic: exposing the brutal organ trade. [Online] Available
from:http://newint.org/features/2014/05/01/organ-trafficking-keynote/. [Accessed on 5 Aug 2016]

Organ Donation. (2015). Transplant save lives. [Online] Available from:http://www.organdonation.nhs.uk/newsroom/fact_sheets/transplants_save_lives.asp.
[Accessed on 5 Aug 2016]

Pat Roque. (1999). Group of men from Baseco “Kidney-ville” in Philippines, displaying their scars from selling a kidney [Photograph]. At: https://digital.newint.com.au/issues/88/articles/1890. [Accessed on 5 Aug 2016]

The Wall Street Journal. (2015). Cash for kidneys: The case for a Market for organs. [Online] Available from:http://www.wsj.com/articles/SB10001424052702304149404579322560004817176.
[Accessed on 5 Aug 2016]

World Socialist Web Site. (2015). Dramatic increase in worldwide illegal organ trade. [Online]
Available from:http://www.wsws.org/en/articles/2012/07/orga-j14.html. [Accessed on 5 Aug 2016]

Save

Shedding Light on the Nucleus

Screen Shot 2016-06-05 at 21.12.02This year the Manchester branch of the British Science Association launched it’s first ever science journalism competition. They presented AS and A-level students across Greater Manchester with the daunting task of interviewing an academic researcher then using this material to create an article accessible to someone with no scientific background. This was by no means a simple task, especially since many of the researchers were working on basic research – the type of work which may not be sensational but which represents the real ‘nuts and bolts’ of scientific research and without which no major breakthroughs would ever be made. Despite the challenges implicit in this task all our entrants stepped up and we were astounded by the quality of work submitted.

Today we’re proud to publish one of our runner up articles written by Hayley Martin from Oswestry School

“The nucleus can be thought of like an engine of a car – driving the actions of the cell”. This is an analogy made by Professor Dean Jackson at Manchester University. With a passion for the genome and forty years of research behind him Professor Jackson has become an expert in understanding mammalian nuclei and chromosomes and how the organisation of their structures defines the cell’s behaviour. In order for these cells to function correctly the genetic code stored in the DNA of each gene has to be interpreted by a process called gene expression, where information from the gene is used in the synthesis of the gene product. These gene products often include proteins such as enzymes, hormones and antibodies, all vital to our survival. Gene expression is immensely complicated due to the number of processes involved. Professor Jackson has been studying these processes and has helped to shed light on exactly why this expression is so complicated.

Figure 1 – The nucleus of a human cell – showing the distribution of DNA (blue), the transcription factories (green) and proteins (red) involved in further modification of RNA.

Figure 1 – The nucleus of a human cell – showing the distribution of DNA (blue), the transcription factories (green) and proteins (red) involved in further modification of RNA.

Transcription is the first process that contributes to gene expression – it is the process whereby information from DNA is copied and made into a new strand of RNA which goes on to synthesize proteins. Professor Jackson has been able to tag newly formed RNA with a fluorescent antibody that can be detected using a laser scanning confocal microscope. This equipment scans a beam of a specific wavelength of light through the specimen, causing the antibodies to fluoresce. The resulting image is displayed in Figure 1. Images such as this have allowed him to locate the areas in the nucleus where this RNA is formed – he refers to these areas as “transcription factories”. He has also found that these factories are made up of many other genes and proteins which assemble into specific complexes. Such knowledge is key to defining the required level of synthesis of each gene product. It also provides the potential for co-regulation of genes in that the way that one gene in this complex is expressed will affect the expression of another gene. Recent work has concluded that genes can have as many as 20 other genetic elements, known as enhancers, that contribute to the gene’s overall expression, which is why it is so complex.

Gene therapy is an exciting modern concept: It offers the prospect of improving lives without the need for drugs with potential side effects and offers possibilities for treating diseases that previously had limited therapeutic options. So far it has been considered as an approach to replacing mutated genes with normal functioning copies, inactivating or removing damaged genes and introducing a new gene that might help the body fight off a disease. With the use of new techniques such as ‘CRISPR’ gene insertion is relatively easy. However Professor Jackson’s research has highlighted how gene therapy isn’t as simple as just inserting a gene – it has to be controlled in the right way by these complex processes in order for the cell to have control of its actions. The difficulty in controlling these actions means that gene therapy is currently a risky process and is not a common treatment. Trials are underway to develop effective gene therapy methods of treating inherited disorders including haemophilia, cystic fibrosis and viral infections such as HIV. We can hope, with advances in the understanding of nuclear structure and processes of gene expression, that safe and effective gene therapy treatments will become a reality.

Post by: Hayley Martin